Hutech Solutions

Amazon EKS Auto Mode
AWS

Amazon EKS Auto Mode: How to Deploy and Manage Workloads

AWS KUBERNETES TUTORIAL

Getting Started with Amazon EKS Auto Mode on AWS

A comprehensive step-by-step guide to mastering Amazon EKS Auto Mode for simplified Kubernetes cluster management and workload deployment.

Published:  June 10, 2025
AWS Kubernetes DevOps

Amazon EKS Auto Mode represents a significant advancement in Kubernetes cluster management, offering automated infrastructure provisioning and simplified operations. This guide will walk you through every aspect of deploying and managing workloads using this powerful feature.

Amazon EKS Auto Mode

EKS Auto Mode Architecture​

EKS Auto Mode Architecture​

What is Amazon EKS Auto Mode?

Amazon EKS Auto Mode is a fully managed Kubernetes experience that automatically provisions, scales, and optimizes your cluster infrastructure. It eliminates the complexity of manual node group management while providing intelligent resource allocation based on your workload requirements.

Key Benefits

  • Automatic infrastructure provisioning and scaling
  • Reduced operational overhead and management complexity
  • Cost optimization through intelligent resource allocation
  • Enhanced security with managed updates and patches

Traditional EKS vs EKS Auto Mode

Traditional EKS vs EKS Auto Mode

Auto Mode Workflow Process

Auto Mode Workflow Process

Prerequisites

Before diving into EKS Auto Mode, ensure you have the following prerequisites in place:

Required Tools and Access

Verify Your Setup

Run these commands to verify your environment is ready:

# Check AWS CLI version aws –version# Verify AWS credentials aws sts get-caller-identity# Check kubectl version kubectl version –client # Verify eksctl installation eksctl version

Step-by-Step Deployment Guide

EKS Auto Mode Deployment Flow

EKS Auto Mode Deployment Flow

Create EKS Auto Mode Cluster

Start by creating your EKS cluster with Auto Mode enabled. This will set up the foundation for automated infrastructure management.

# Create EKS cluster with Auto Mode
eksctl create cluster \
--name my-auto-mode-cluster \
--region us-west-2 \
--version 1.28 \
--enable-auto-mode \
--zones us-west-2a,us-west-2b,us-west-2c
Note: Cluster creation typically takes 10-15 minutes. Monitor progress witheksctl get cluster

Configure kubectl Context

Update your kubectl configuration to connect to the newly created cluster:


# Update kubeconfig
aws eks update-kubeconfig \
–region us-west-2 \
–name my-auto-mode-cluster

# Verify connection
kubectl get nodes
kubectl get pods –all-namespaces

Deploy Sample Application

Deploy a sample application to test the Auto Mode functionality:

# sample-app.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:
    app: nginx
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:1.21
        ports:
        - containerPort: 80
        resources:
          requests:
            memory: "64Mi"
            cpu: "250m"
          limits:
            memory: "128Mi"
            cpu: "500m"

---

apiVersion: v1
kind: Service
metadata:
  name: nginx-service
spec:
  selector:
    app: nginx
  ports:
  - protocol: TCP
    port: 80
    targetPort: 80
  type: LoadBalancer

Apply the configuration:

# Deploy the application
kubectl apply -f sample-app.yaml

# Monitor deployment
kubectl get deployments
kubectl get services
kubectl get pods

Monitor Auto Scaling

Observe how EKS Auto Mode automatically provisions nodes based on your workload requirements::

# Check node provisioning
kubectl get nodes -o wide

# View auto-scaling events
kubectl describe nodes

# Monitor resource utilization
kubectl top nodes
kubectl top pods
Monitor Auto Scaling

Best Practices for EKS Auto Mode

Resource Management

  •  Always define resource requests and limits
  • Use horizontal pod autoscaling (HPA)
  • Implement pod disruption budgets
  • Monitor resource utilization patterns

Security Considerations

  • Enable pod security standards
  • Use IAM roles for service accounts
  • Implement network policies
  • Regular security updates and scanning

Configuration Example: HPA Setup

# hpa.yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: nginx-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: nginx-deployment
minReplicas: 3
maxReplicas: 10
metrics:
type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80

Troubleshooting Common Issues

Pods Stuck in Pending State

When pods remain in pending state, it usually indicates resource constraints or scheduling issues.


# Diagnose pending pods
kubectl describe pod <pod-name>
kubectl get events –sort-by=.metadata.creationTimestamp

# Check node capacity
kubectl describe nodes

Slow Auto Scaling Response

Auto Mode may take time to provision new nodes. Check scaling policies and cluster configuration.

# Check cluster autoscaler logskubectl logs -n kube-system deployment/cluster-autoscaler# Verify auto scaling configurationkubectl get configmap cluster-autoscaler-status -n kube-system -o yaml

Cost Optimization Strategies

EKS Auto Mode provides several mechanisms to optimize costs while maintaining performance:

Automatic Cost Optimization Features

Intelligent Instance Selection

Auto Mode automatically selects the most cost-effective instance types based on workload requirements.

Spot Instance Integration

Seamless integration with spot instances for significant cost savings on fault-tolerant workloads.

Dynamic Scaling

Resources scale down automatically during low-demand periods to minimize costs.

Resource Right-sizing

Continuous monitoring and adjustment of resource allocation based on actual usage patterns.

Monitoring Costs

# Use AWS Cost Explorer API to track EKS costs
aws ce get-cost-and-usage \
  –time-period Start=2024-01-01,End=2024-01-31 \
  –granularity MONTHLY \
  –metrics BlendedCost \
  –group-by Type=DIMENSION,Key=SERVICE

# Monitor resource utilization
kubectl top nodes
kubectl top pods –all-namespaces

Conclusion

Amazon EKS Auto Mode significantly simplifies Kubernetes cluster management by automating infrastructure provisioning, scaling, and optimization. By following this guide, you’ve learned how to deploy workloads effectively while leveraging the platform’s intelligent automation capabilities.

Key Takeaways

  • EKS Auto Mode reduces operational complexity while maintaining full Kubernetes functionality
  • Proper resource specification is crucial for optimal auto-scaling performance
  • Monitoring and observability remain essential for production workloads
  • Cost optimization is built-in but requires understanding of usage patterns

Leave a Reply

Your email address will not be published. Required fields are marked *